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Autonomous oscillatory systems depending on several parameters are considered. The behaviour of 

the eigenvalues is considered in the neighbourhood of a multiple point. The method of perturbations is 

used to show that the interaction of eigeuvalues in the neighbourhood of the point in question is 

described by a family of hyperbolae. The coefficients of the equations of these hyperbolae are 

calculated using an eigenvector and an associated vector, an eigenvector of the adjoint problem at the 

multiple point, and the increments of the parameters. The relationships obtained enable an analytical 

description and geometrical interpretation to be given of two interesting phenomena frequently 

observed in the literature: the shift of the critical mode of an oscillatory system [l-3], and the 

destabilization of a system by weak damping [4-81. Examples considered are the shift of the critical 

mode of an articulated pipe through which a liquid is flowing, and the destabilization of a non- 

conservative two-degree-of-freedom Ziegler model. 

1. Consider the linear oscillatory system 

Mij+Di+Aq=O (1.1) 

where M, D and A are real square matrices of order m, representing the inertial, damping and 
rigidity properties of the system, respectively, and q is an m-vector of generalized coordinates. 
It is assumed that the elements of M, D and A are smooth functions of the components of the 
parameter vector p=(p,, p2, . . . , p,) and A4 is a non-singular matrix. 

Seeking a solution of Eq. (1.1) in the form q = uexp(ht) (t is the time), we obtain a general- 
ized eigenvalue problem 

[h2M + hD + A]u = 0 (1.2) 

where 3L is an eigenvalue and u is an m-dimensional eigenvector. 
Let us assume that the parameter vector p,, = (p,“, . . . , p,“) corresponds to an algebraically 

double eigenvalue h, (a double root of the characteristic equation det[h2M + hD + A] = 0) with 
an eigenvector u, which is unique apart from a factor. This means that the matrix 
h2A4+ hD+ A has a deficiency of unity at h = h,, p = p,,. In that case the eigenvector u, and the 
associated vector u, are determined by the equations 

Luo = 0 (1.3) 

Lu, = -[2h,M,, + Do ]u, (1.4) 

+Prikl. Mat. Mekh. Vol. 58, No. 5, pp. 49-58, 1994. 



A. P. Seiranyan 

L = %Mo +&&I + 4, MO = M@o), Do = DQo), A0 = A(po) 0.5) 

where L is a matrix operator. In the complex vector space C” we define a scalar product (a, b) 
in the usual way and consider the eigenvalue problem for the operator adjoint to (1.5) 

L*uo = 0 (1.6) 

where L” -c. Evaluating the scalar product of both sides of (1.4) with u,, we obtain 

(m&f0 + Doluo, uo)o) = 0 (1.7) 

since (Ly, u,) = (u,, L*u,) = 0 because of (1.6). 
Let us investigate the behaviour of the eigenvalues h in the neighbourhood of the point 

p = p. in the parameter space Iz”. To that end we give the vector p. an increment p = p. + Ek, 
where k =(k,, k,, . . . , k,) is an arbitrary normalized variation vector, I k I= (k: + k,’ + . . . 
+k,2)1’2 =: 1 and E is a small parameter, E > 0. As a result the matrices M, D and A also receive 
increments 

M=,klo+eh4i+ . . . . D=D,+ED,+ . . . . A=A,+ul,+... 

(1.8) 

To solve the spectral perturbation problem (1.2) it is convenient to reduce it, by doubling 
the dimensions, to the equivalent eigenvalue problem Brl= hii. This enables us to use the 
results of [9] concerning perturbation of the spectrum of a non-self-adjoint operator. Using the 
expansions 

h=h,,+&h,+&+..., u=u,+E%*+EW*+... (1.9) 

we obtain an expression for the first correction h, [lo, 111 

X: = 5 fjkj 
j=l 

(1.10) 

f,~~~~aL~~~jlu~~~~~[~~21L~M~+D,lU~~u~~~~M,u~~u~~]~' 
(1.11) 

The vectors .?+,, 11~ and 2), in the last relationship are determined by solving problems (I.3), 
(1.4) and (1.6), and the derivatives t3L/i3pj are found explicitly 

aL I i3pj = h;aM I apj + h,aD 1 dpj + aA t apj (1.12) 

Note that the coefficients f, in (1.11) are expressed in terms of values at the point p=po and 
are independent of the variation vector k. Putting 

aj =Refj, bj = Imfj, &j =Ckj (1.13) 

and multiplying (1.10) by E, we obtain 

( 1 
K 

da, = ,z, (aj + ibj Mj (1.14) 

By (1.9), the right-hand side of (1.14) is the first approximation of the change induced in the 
double eigenvalue h, (of order 4s) by a parameter variation Ap, (i = 1, . . . , 12). Note that the 
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expansions (1.9) hold for sufficiently small E values. Using the normalization I k I= 1 and the 
notation Apj of (1.13), we obtain a condition for the smallness of E 

(1.15) 

To investigate the behaviour of the eigenvalues in the complex h plane, we introduce 
notation for the real and imaginary parts of the increment 

&A, = X+iY (1.16) 

Using (1.16) and squaring (1.14), we obtain 

X2 - Y2 = i ajApj, 2XY = 5 bj~j (1.17) 
j=l j=1 

Eliminating one of the parameters, say ApI, from the system of equations (1.17), we have 

bl(X2 - P) - 2alXY = A9 = const (1.18) 

A9 = ,i2 (blaj - albj l&j (1.19) 

Equation (1.18) for X and Y defines a hyperbola with mutually orthogonal asymptotes 
qX = Y(q +(q + bf)%). Figure 1 shows the asymptotic behaviour of the eigenvalues in the 
complex h plane near a double eigenvalue h, with unique eigenvector, for fixed values of Apj 
(j=2, . ..) n) and a change in ApI. The arrows indicate the “motion” of the eigenvalues when 
there is a monotonic increase in pl in the neighbourhood of p,“. The eigenvalues approach one 
another, merge, and then diverge at right angles to the line of approach. This occurs when 
A9 = 0, which by (1.18) means that the hyperbola is degenerate. This is the case, in particular, 
when all the parameters except pl remain unchanged Apj = 0 (j= 2, . . . , n). For small 
increments Ap, (j= 2, . . . , IZ), corresponding to a constant A9 20 in (1.19), the picture of 
head-on collision is “spread out”. The quadrants that contain the branches of the hyperbola are 
reversed if the sign of the constant A9 is reversed (see Fig. 1). 

To construct the hyperbolae (1.18) one uses a solution of the eigenvalue problems (1.3), 
(1.4) and (1.6) to determine the quantities h,, II,, y, u,; then, using formulae (1.11) and 
(1.13), one finds the constants uj, Q (j = 1, . . . , n) and constructs the asymptotes. Next, 

Fig. 1. 
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determining the increments Ap, (j= 2, . . . , n) by formulae (1.18) and (1.19), one finally 
obtains a family of hyperbolae. Note that formulae (1.18) and (1.19) and Fig. 1 provide not only 
a qualitative picture but also quantitative data for the interaction of the eigenvalues in the 
neighbourhood of a double root h, with a matrix L of deficiency 1. To investigate the 
interaction of eigenvalues induced by a change in p,, with fixed variations Ap, (j = 1, . . . , n; 
j # s), replace the index 1 in (1.18) and (1.19) by s and extend the summation in (1.19) over all 
indices j=l, . . . , n, j#s. 

2. Let us consider the case of two independent parameters pl and pz in system (1.1) in 
greater detail. In that case the equation of the hyperbola (1.18), (1.19) becomes 

Since the parameters p1 and p2 are independent by assumption, the vectors (4, 4) and (4, 
b,) are in general also independent, and so u,b, --a$, #O. Hence the hyperbola (2.1) 
degenerates only when Ap2 =0, i.e. when only the parameter p, is varied. If the sign of Apz is 
reversed, the quadrants containing the branches of the hyperbola are replaced by the adjacent 
quadrants. Thus, if Ap2 # 0 the interaction of the eigenvalues is described by a non-degenerate 
hyperbola (2.1). This indicates that in a space of two parameters a double complex eigenvalue 
h, with unique eigenvector is generally an isolated point. The above considerations agree with 
the results of [12, 131, according to which the singularity of a two-parameter family of real 
matrices in the case of the general position has a double isolated eigenvalue with a two by two 
Jordan cell. 

Our analysis of the interaction of eigenvalues enables us to describe and explain the phenomenon of 
critical mode shift, frequently observed in oscillatory systems in parametric investigations. The 
phenomenon has been observed in studies of the aero-elastic stability (flutter) of aircraft wings, the 
oscillatory stability of a pipeline through which liquid is flowing, etc. [l-3]. This effect is illustrated 
qualitatively in Fig. 2, which shows the behaviour of the branches of the eigenvalues when there is a 

variation of the non-conservative load parameter p SO. We say that the system S, shown in Fig. 2(a) 
loses stability in the first mode, while the system S, obtained from S, by a continuous parameter change, 

as shown in Fig. 2(b), loses stability in the second mode. 
As an example, let us consider two-dimensional vibrations of an articulated pipe consisting of three 

rigid tubular members connected by elastic hinges of stiffness [3], where each member is of length 1 and 

mass ml. Thus, the system has two degrees of freedom ‘p,, ‘pz and is a Benjamin model of an elastic pipe 

(@I 

0 RClS 

@I 

0 Rc A 

Fig. 2. 
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through which a liquid is flowing. It is assumed that the liquid is incompressible and is flowing at a 
constant velocity U relative to the pipe walls. The mass of liquid per unit length of pipe is denoted by m,; 
damping is neglected. Then the equations of small vibrations of the whole articulated pipe are [3] 

where p and n are dimensionless parameters: the flow velocity of the liquid and the relative mass, 

respectively 

p= Ul(?nf In), pro, T+//(m+mf))X. O<?l<l (2.3) 

The dots in (2.2) denote differentiation with respect to dimensionless time r = t(cl(m + m,)‘l)‘. 
Substituting the expressions ‘pi = 5, exp(hz) (j = 1, 2) into (2.2) and equating the determinant to zero, 

we obtain the characteristic equation 

h4 +(24/7)& +(x(108-30~’ +36n2p2)k2 +(36/7).rlp(5-p*)li+36/7=0 (2.4) 

The eigenvalues h depend on the two parameters p and n introduced in (2.3). System (2.2) is stable if 

Re h G 0 for all the eigenvalues; otherwise the system is unstable. 
A numerical analysis has been carried out [3] of the behaviour of the eigenvalues h as a function of the 

velocity parameter p for fixed values of the relative mass parameter n. The critical mode shift 

phenomenon was observed: at certain n values the first mode was critical, at other values of q the second 

mode became critical. 
To analyse this phenomenon, we first determine the double eigenvalues. If h = a+io is a double 

eigenvalue, then h = a+io is also a double eigenvalue. Therefore the characteristic equation for the 
second-order system is 

(X-a-im)*(h-a+io)* =A4 -4a3c3+2(3a2+w2)~2-4a(a2+02)h+(a2+w2)2=0 (2.5) 

Equating the corresponding terms of Eqs (2.4) and (2.5), we find a unique pair of complex-conjugate 

double roots h, = a, f iw, 

a0 =-(2(l-6/(7fi)))x=-1,1628 

o. =(2(27/(7fi)-1))‘=0.9569 

corresponding to parameter values pO, no 

p. =(5-4/@=1.8677 

no =(7(7fi-6)l(18(5fi-4)))K =0.7264 (2.7) 

(2.6) 

Solving Eqs (1.3) (1.4) and (1.6) we evaluate the constants ai, b, (j = 1, 2). Using Eqs (1.14) and (1.16), 

we deduce from (1.10) and (1.13) that 

X+iY=((a, +ib,)Ap+(a2+ib2)A# (2.8) 

al = 6.8832, b, = 0.2788; a2 = 1.3304, b2 = -6.7855 

The resulting equation of the hyperbola (2.1) is 

X2 - 49.37 17XY - Y* = 168.8375Arl (2.9) 
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Fig. 3. 

Thus, the interaction of the eigenvalues h in the neighbourhood of the point p,,, q,, is described by a 
hyperbola (2.9) with orthogonal asymptotes X = 49.3919Y and X = -0.02024Y (see Fig. 3). The arrows 

indicate the “motion” of h as p increases. Expressions (2.6)-(2.9) are in complete agreement with the 

numerical results of [3]. They illustrate the phenomenon of critical mode shift: when q > q0 the flutter 

occurs in the first mode; when r-t > q0 stability is lost in the second mode. 

3. The interaction of the eigenvalues near the double eigenvalue h, also enables us to 
describe the destabilizing effect of weak damping on a non-conservative system. In this phen- 
omenon, the critical load of a weakly damped system proves to be less than that of the ideal 
(undamped) system. The effect was observed by Ziegler and has since been investigated by 
others (see [5-81, etc.). 

To describe the destabilization effect, we consider a weakly damped oscillatory system 

Mi + PDcj + A(p)q = 0 (3.1) 

depending on two parameters: the load parameter y and a small parameter p > 0. 
The corresponding eigenvalue problem is 

Lu =o, L=h2M+hpD+A(p) (3 *2) 

Let us first consider an ideal system, i.e. system (3.2) with p = 0. Suppose that at p =p,, a 
purely imaginary double root X0 = iw, of the characteristic equation det[hiM + A@,)] = 0 exists, 
with a unique eigenvector u,. As we shall show below, the number p. is the boundary of the 
stability domain of the ideal system. By Eqs (1.3), (1.4), (1.6) and (3.2) 

[A(p+o;M]u,, =O, [AT(p,,)-o$fT]q, =O, [A(p&o;M]u, =-2iwoMu,, (3.3) 

Equations (3.3) yield the eigenvector zd,,, the associated eigenvector U, and the eigenvector V, 
of the adjoint problem. By (3.2) 

aLlap = aA/ap, aLlap = hD (3.4) 

It follows from Eqs (1.7) (1.10) (1.11) and (3.4) that 

&a: = -[([aA / dp&,, ~,,W+&(Du,, qJ3](%GW~ W)-’ (3.5) 

Note that by (3.3) the vectors zr, and U, are real, whereas 14, which is defined, apart from a 
term w, y = const, may be chosen to be purely imaginary. Hence we can rewrite (3.5) in the 
form 

X + iY = &II., = (a& + ib/3# (3.6) 
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a = --(@A / +luo, q,X2ho(Mu,, u,))-‘, b = -(Du,, u,,)(~~(Mu,, I+,))-’ 

where a and b are real constants. 

Consider relationship (3.6) with p=O and a assumed to be positive. Then as p increases the two 

eigenvalues h approach one another along the imaginary axis and merge at p = p0 into a single point 
h, =iw,; they then diverge on different sides of a line perpendicular to the imaginary axis (Fig. 4a). The 
arrows indicate the change in h as p increases. Thus, p,, is a critical value for the ideal system: when 
p c PO the system is stable, when p > p. it is unstable. 

If Ap = 0 and l3 increases away from zero, the double eigenvalue h, splits along a straight Iine inclined 
at an angle of 45” to the imaginary axis. Figure 4(b) illustrates the ray b > 0. If b < 0, the splitting occurs 
along a straight line perpendicular to that shown in Fig. 4(b). 

If one of the parameters p and p is fixed and the other varied, relationship (3.6) directly implies the 

equations of hyperbolae 

x2-Y2=uAp, 2XY=b@ (3.7) 

Figure 5 illustrates the interaction of the eigenvalues when p is fixed and p is allowed to increase. The 
case of a fixed value of Ap < 0 and increasing p is shown in Fig. 6. In both figures the solid curves 
illustrate the case h > 0 and the dashed curves illustrate the case b < 0. For the construction of the curves 
shown in Figs 5 and 6 the values of Xand Y were found, as follows from (3.7) by solving the equations 

(3.8) 

Relationships (3.6)-(3.8) and the patterns of the interaction of h as shown in Figs 5 and 6 imply the 
destabilizing effect of arbitrarily weak damping PzO. It is interesting that the same results also imply a 

destabil~ing effect of weak negative damping p < 0, since by (3.7) reversing the sign of p is equivalent to 
reversing the sign of the constant b. 

4. As an example, let us consider a two-dimensional system representing a double pendulum with 

viscoelastic hinges 141. Assume that the torques at the hinges are q1 + d@ and c(cp, -cp,)+ d(& -&), 
respectively, where c is the stiffness and d the damping coefficient. Point masses 2~1 and m are placed at 
the middle and end of the pendulum; the arms of the pendulum are both equal to 1, and a servo-force P is 
applied to the system at the free end. Gravitational forces are ignored. The stability of this system was 
studied by Ziegler [4]. 

Define dimensionless variables as follows (the magnitude of the servo-force is p, the damping 

coefficient is p and the time 2) 

The equations of the oscillating system may be written in terms of these variables in the form (3.1) with 

I I 
0 Rr A 0 Re A 

Fig. 4. 
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Fig. 5. Fig. 6. 

(4.1) 

For a double eigenvalue, we find an isolated point h, = io, = i2-% corresponding to p. = % - 42. As p 

increases away from zero, the two purely imaginary roots h of the ideal system (p = 0) approach one 

another along the imaginary axis, coalesce at p=po into a single point h, and then become complex 
conjugate points. Thus the ideal system is stable for 0 s p < p. and unstable for p 3 po. 

Now consider the behaviour of the eigenvalues of a system with weak damping p > 0. We solve Eq. 

(3.3) with the matrices (4.1) for p = po, h-h, and calculate the constants ~2 and b from (3.6); this gives 

3-2& 
uo= 1 

I I 
’ 

a=%, b=-(7-2&)/(8.2$ (4.2) 

Thus, the asymptotic behaviour of the eigenvalues in Ziegler’s problem is described by the hyperbolae 

(3.7) shown in Figs 5 and 6. Note that the numbers a and b of (4.2) not only provide a qualitative picture 

but also give quantitative information, provided the expansion parameter (1.15) is small. 

5. We have studied the case of a double eigenvalue in detail. A similar study can be made of 
the more general case of an r-tuple eigenvalue h, with a single linearly independent eigen- 
vector ii& Writing the expansions in this case in the form [9] 

h = A() + &“%, + &%* + . . . . U=Ug+&“‘w, +&*%v*+... 

and reasoning by analogy with the arguments in Section 1, we obtain the asymptotic relations 

( 1 
l/r 

X+iY=&“‘h, = i (Uj+ibj)Qj 

j=l (5.1) 

In these expressions u,, and u, are the eigenvectors in problems (1.3) and (1.6), while u,, 
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X 

Fig. I. 

u,, * * * 3 Y-1 is a sequence of associated eigenvectors satisfying the equations 

[ ‘2oM + h,D + A]Uj + [2h,M + D1Uj-l + M~j-2 = 0 

j = 1, **., r - 1; U_l = 0 

The interaction of eigenvalues in the complex plane when one parameter p, is varied and 
the others are held fixed, A,pj (i= 1, . . . , n; j# s), is illustrated in Fig. 7 for the case r = 4. 
When p, varies monotonically in the neighbourhood of pi and A,pj = 0 (i = 1, . . . , n; j #s), the 
r eigenvalues converge at angles 27rlr, merge at p, = pp into a single eigenvalue h,, and then 
diverge along the bisectors of the angles. When the increments Apj do not vanish, the pattern 
of the interaction, generally speaking, is “smeared out”, i.e. it is described by non-degenerate 
hyperbolae. 

I wish to thank V. V. Rumyantsev and V. A. Svetlitskii for their comments. 
The research reported here was carried out as part of a project entitled “Dynamics, Strength 

and Reliability of Machines, Instruments and Structures”. 
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